
SWEN-261
Introduction to Software 
Engineering
Department of Software Engineering
Rochester Institute of Technology

Object-Oriented Design

Single responsibility 
High cohesion

Information expert
Low coupling

Law of Demeter
Dependency inversion

Controller
Open/close

Polymorphism



Up to this point, you have studied object-oriented design mostly at 
the class level.
§ This set of skills needs to be expanded to design larger scale systems.
§ You need to consider the interactions between classes and the effect of 

classes on other classes.
§ The software engineering community has put forward sets of design 

principles to follow.
• SOLID (Bob Martin, Principles of OOD)

• GRASP (Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative 
Development.)

§ We will look at some of these principles, along with the Law of Demeter.

2



SOLID and GRASP provide two sets of object-oriented design 
principles.

§ Single responsibility
§ Open/closed
§ Liskov substitution
§ Interface segregation
§ Dependency inversion 

3

SOLID

GRASP
§ Controller
§ Creator
§ Indirection
§ Information expert
§ High cohesion
§ Low coupling
§ Polymorphism
§ Protected variations
§ Pure fabrication 

Law of Demeter 



The Single responsibility principle will lead to smaller classes each 
with less responsibility.

§ The Single responsibility principle is perhaps the most important object-
oriented design principle.

§ A class should have a single, tightly focused responsibility.
§ This leads to smaller and simpler classes, but more of them.

• Easier to understand the scope of a change in a class.
• Easier to manage concurrent modifications.
• Separate concerns go into separate classes.

§ Helps with unit testing.

4

A class should have only a single responsibility.



Heroes API Single Responsibility Example

§ The HeroController from our activities is an example of a class having a 
single responsibility

§ Its purpose is to handle Hero API requests and provide responses using 
HTTP Protocols

§ It is not concerned with the management of the Hero data or even the 
underlying storage mechanism – it delegates this responsibility to the 
HeroDAO class

§ It would certainly be possible to implement all of the Hero REST API 
functionality within the HeroController, but his would be very limiting, e.g.
• There would have to be an inner Hero class, limiting the reusability of the Hero class
• The HeroController class would have the responsibility of reading from and writing to 

the file, limiting the ability to exchange the underlying storage mechanism, e.g. 
replace the file with a database

• Unable to have focused unit tests5



Low Coupling attempts to minimize the impact of changes in the 
system.

§ Note the unnecessary word. Coupling is needed in your system.
§ Resist lowering coupling simply to reduce the number of relationships.

• A design with more relationships is often better than the design with fewer 
relationships.

• You need to balance all the design principles.
• Beginning designers often place low coupling at the top of their design principles list. 

It should be lower down!

6

Assign responsibility so that (unnecessary) coupling remains low.



Single Responsibility vs. Low Coupling

Single Responsibility will require coupling to more classes to get work 
accomplished.

• Do not be afraid of requiring a few more relationships to achieve this

7



Consider that you are implementing a library management system.

§ You could place most of the functionality into a LibraryManager class.
§ This class would have too many responsibilities.

• Maintaining the library catalog
• Maintaining patron accounts
• Scheduling library events

8



Separate the concerns into more classes each with a single highly 
focused responsibility.

9



Some classes are more complex than you think they are.

§ Consider that you are building an airline flight reservation system.
§ A Flight entity will definitely be in the domain model and be a class in your 

implementation.
§ You could consider this to be only a data holder class with no other 

behavior.

§ This would lead to something like è

10



Student project code often does not do right by the client of their 
classes.

§ A client of Flight had this code:
flight1.getDestination().equals("JFK")
flight1.getOrigin().equals("ROC") && flight1.getDestination().equals("JFK")
flight1.getArrival() < flight1.getDeparture()
flight1.getArrival() + 60 < flight2.getDeparture()

§ Why does the client of Flight have to do this "heavy-lifting"?

11

Note: Time is stored in 24 hour notation.



Information Expert looks to have behavior follow data.

§ The first place to consider placing code that uses/processes attribute data is 
in the class that holds the attributes.

§ Instead of the client of Flight implementing this:
flight1.getDestination().equals("JFK")
flight1.getOrigin().equals("ROC") && flight1.getDestination().equals("JFK")
flight1.getArrival() < flight1.getDeparture()
flight1.getArrival() + 60 < flight2.getDeparture()

§ Consider Flight as the Information expert
boolean destinationIs(String airportCode)
boolean itineraryIs(String originCode, String destinationCode)
boolean arrivesNextDay()
boolean canConnectWith(Flight nextFlight)

12

Assign responsibility to the class that has the information needed to fulfill the 
responsibility.



Make a class as simple as possible, but not simpler.

§ Aim to implement the behaviors that directly work with the class' attributes.
§ Consider what clients will want to do with the attribute data—put those 

behaviors in the class.
§ If you are a client doing processing with the attribute data, consider putting 

your operation in the class.

13

Everything should be made as simple as possible, but not simpler. - Einstein



The Dependency inversion principle provides looser coupling 
between dependent entities.

§ A common manifestation of this is dependency injection.
• The low-level module does not have responsibility for instantiating a specific 

dependent class.
• The high-level module injects the dependent element.
• The low-level module is only dependent on the (high-level) abstraction not the (low-

level) implementation.
• The injection can be during construction, using a setter, or as a parameter in an 

operation method.
• Critical for doing unit testing since we can inject test/mock objects.

14

High-level modules should not depend on low-level modules. Both should depend 
on abstractions.



Here is how an application's design might evolve to incorporate 
dependency injection.

§ Higher level (Application) has responsibility for instantiation of specific Catalog 
implementation (MySql or Oracle).

§ Design does not adequately separate the concerns of catalog operations vs 
database operations, i.e. Catalog operations and database operations co-exist 
in the same class.

§ It will be difficult to unit test just catalog operations.

15

§ Lower level (Catalog) has responsibility for instantiation.
§ It will be difficult to unit test the Catalog class as it has a dependency on the 

database, which the Catalog class manages internally.

§ Higher level (Application) has responsibility for instantiation of the specific 
database implementation.

§ It injects this Database dependency into the Catalog when it is instantiated.
§ Catalog only deals with higher level Database abstraction.
§ Use mock version of Database to test Catalog.



Heroes API Dependency Injection Example

16

§ As the HeroController only deals with the higher level 
HeroDAO abstraction, we can swap out the HeroFileDAO for 
another persistent storage mechanism, e.g. a database 
through only configuration.

§ As long as the database DAO adheres to the HeroDAO
interface, the HeroController does not need to change.

§ The Spring Framework, via configuration, creates a 
HeroFileDAO object.

§ It injects this HeroFileDAO object into the HeroController
when it is instantiated.

§ HeroController only deals with higher level HeroDAO
abstraction.

§ This allows for independent testing of the HeroController and 
HeroFileDAO classes.



In Angular, Services are a key benefactor of Dependency Injection

§ They rely on the paradigm for injection into various consumers

17

The logger service is 
injected into the 

constructor



Controller specifies a separation of concerns between the UI tier 
and other system tiers.

§ In simple systems, it may be a single object that coordinates all system 
operations.

§ In more complex systems, it is often multiple objects from different classes 
each of which handles a small set of closely related operations.

§ In the Heroes API project, the Spring Controller classes, e.g. HeroController, 
fulfill the duties of the GRASP Controller.

18

Assign responsibility to receive and coordinate a system operation to a class 
outside of the UI tier.



Here is how GRASP controllers fit into the software architecture.

19

UI Tier Appl Tier

Model 
Tier

So
m

e 
Ap

pl
Ti

er
 c

la
ss

So
m

e
M

od
el

Ti
er

 c
la

ss

Appl Tier

Model 
Tier

Vi
ew

 c
on

tro
lle

rs
 w

or
k 

th
ro

ug
h 

th
es

e 
cl

as
se

s

UI Tier

Vi
ew

 c
on

tro
lle

rs
 w

or
k 

th
ro

ug
h 

th
es

e 
cl

as
se

s

Operation Subsystem

Operation

Op1

Op2

Op3

Simple System More Complex System



The Open/closed principle deals with extending and protecting 
functionality.

§ Software functionality should be extendable without modifying the base 
functionality.
• Mostly provided by features of implementation language: inheritance, interface

§ Your design should consider appropriate use of
• Inheritance from abstract classes
• Implementation of interfaces

§ Dependency injection provides a mechanism for extending functionality 
without modification.

20

Software entities should be open for extension, but closed for modification.



Open/Closed example…

21

Rectangle 
Class

AreaCalculator.Area() 
calculates area for all 
rectangles 



Open/Closed example…

22

AreaCalculator.Area() now 
includes calculating area 
for all Rectangles and 
Circles

We must keep modifying Area for each new shape type 
(e.g. triangle)



Open/Closed example…

23

Create an abstract 
Shape class

AreaCalculator.Area() 
can now calculate 
areas for any shape. 
AreaCalculator.Area() 
Closed for 
modification, open for 
extension 

Rectangle and 
Circle inherit from 
Shape, implement 
Area()



The Law of Demeter addresses unintended coupling within a 
software system.
§ Limit the range of classes that a class talks to

• Each unit only talks to its friends; don't talk to strangers.
• Each unit only talks to its immediate friends; don't talk to friends of friends
• Chained access exposes each intermediate interface

§ From the previous checkers project
• Instead of violating the Law of Demeter
board.getPieceAt(i,j).getType()

• Create a new Board method to reduce coupling
board.getPieceTypeAt(i,j) 

§ If you need to talk to something "far away"
• Get support from your friend, i.e. new method
• Get a new friend, i.e. new direct relationship

24



Pure Fabrication is sometimes needed to balance other design 
principles.

§ Your design should be primarily driven by the problem domain.
§ To maintain a cohesive design you may need to create classes that are not 

domain entities.

25

Assign a cohesive set of responsibilities to a non-domain entity in order to 
support Single Responsibility and Low Coupling.



Pure Fabrication example…

26

Information Expert “Sale” class 
saves its instance to a database 
resulting in multiple responsibilities

“StorageAgent” is a Pure 
Fabrication class, that carries the 
generic task of saving objects to a 

database

“Sale” class is back to its Single 
Responsibility state


